

Company Profile

SIGMA ELECTRIC MANUFACTURING CORPORATION PVT. LTD, UNIT II, PUNE

INDEX

#	Contents	Page No.
1	Sigma Group	3 - 6
1.1	Company Profile	3
1.2	Outline of the Group	4
1.3	Global Footprint	4
1.4	Organization Chart – Group	5
1.5	Vision, Mission and Values	5
1.6	Manufacturing and Engineering Capabilities	6
1.7	Global Partners	6
2	About Sigma Unit - II	7 – 12
2.1	Outline of the Unit	7
2.2	Business Model	8
2.3	Milestones	8
2.4	Organization Chart – Unit - II	9
2.5	Product Portfolio	9
2.6	Key Customers	10
2.7	Unit Layout	10
2.8	Staffing Structure	11
2.9	Major Equipment	11
2.10	Manufacturing Process Flow	12
2.11	TPM Organization Structure	12
3	Milestone on the Journey of Manufacturing Excellence	13 – 15
3.1	Need of TPM	13
3.2	Embracing TPM for Manufacturing Excellence	13
3.3	TPM Policy	14

Company Profile – Sigma Unit II

3.4	Integration of all Tools and Methodologies in TPM	14
3.5	Evolution of Operator	15
4	Results and Benefits Achieved	16 – 19
4.1	Key Performance Indices – Results	16-17
4.2	Intangible Benefits	18
4.3	Recognitions in External Competitions	19
5	Way Ahead	20

1. Sigma Group

1.1 Company Profile

Brief History

Sigma Electric is a global leader in manufacture of ferrous and non-ferrous castings, precision machined components and sub-assemblies. Sigma has established long-term partnerships with its global customers, working closely to help them meet the challenges of a highly competitive business environment.

Sigma Electric is a 100 % Export Oriented Organization. Set up 30 years ago. HQ at Garner, NC, US. There are over 5000 team members worldwide. Sigma has a majority shareholding from Argand Partners, USA.

Product Range

Sigma supplies to global leaders in market segments such as electrical, lighting, industrial, power tools, process instrumentation, appliances, telecom, aerospace, defence, marine, power, agricultural, food and Medical, Military, LED lightings.

Locations

Twelve world class manufacturing facilities at Pune, Jaipur, Mexico, USA for aluminum, zinc, bronze, copper, wide range alloys, iron & steel products.

Plants

Manufacturing capacity is 50,000 MT/annum with world-class manufacturing equipment tool room and design /engineering capabilities. Plants operate on Lean manufacturing system, certified for ISO 9001, ISO 14001, ISO 45001, AS9100, ITAR certifications.

Global Supply Chain

Warehouse, sales, customer service and tech teams are at Garner, NC, USA.

1.2 Outline of the Group

Sigma Electric is a global leader in the manufacture of machined cast metal parts the electrical, utility, home appliances, telecom, industrial and instrumentation of the electrical structure of the

1.3 Global Footprint

Sigma group is having total 12 manufacturing facilities throughout the world. Out of which 6 manufacturing plants are in Pune, 2 plants in Jaipur and 4 plants are in US and Mexico.

1.4 Organization Chart - Group

1.5 Vision, Mission and Values

Company's Vision, Mission and Core values are mentioned below.

1.6 Manufacturing and Engineering Capabilities

1.7 Global Partners

These are our key customers.

Added 5000+ New products with 20+ New Customers over last 4 years

2. About Sigma Unit – II

2.1 Outline of the Unit

Plant	Aluminum High Pressure Die-Casting Plant
Product Range	Electrical, Lighting and Household Appliances
Plant Area	180000 Sq. Ft.
Installed Capacity	10,680 MT / Annum
Alloys	Aluminum Alloys
Total Employees	710 Nos

	Aluminum HPDC	Steel Fitting
Equipment	34 Cold Chamber HPDC Machines (Automatic) ranging from 150 Tons to 650 Tons, Three Central Melting Furnace, In-house Spectro, Precision Machining – CNC and VMC, SPMs, Powder Coating plant	Steel tube cutting, Forming Press, Thread rolling, Piercing press, Sizing press, Logo marking machines.
Capacity (FY22)	10,200 T / Year	480 T / Year

2.2 Business Model

Business model shown below

<u>2.3 Milestones</u> These are milestones of our organization.

2.4 Organization Chart - Unit - II

2.5 Product Portfolio

Product Range - Electrical, Lighting and House Hold Appliances

Conduit Fit

2.6 Key Customers

These are our key customers.

2.7 Unit Layout

2.8 Staffing Structure

Category wise manpower distribution as follows

Category	Unit	Employee Count
Staff	Nos.	64
Associates	Nos.	64
Assistant Engineer - Line	Nos.	36
Technician	Nos	20
DET	Nos	140
Contract Operator	Nos	386
Total No. of Employees	Nos	710

2.9 Major Equipment

Following is equipment classification

	Area	Equipment Quantity	Equipment Classification			
#			S	А	В	С
1	Die Casting	114	4	43	59	8
2	Machine Shop	174	6	56	103	7
3	Paint Shop	18	18	-	-	-
4	Assembly	57	12	6	24	15
5	DMG	10	-	1	11	-
6	Utility	33	-	6	17	10
	Total Equipment	406	40	112	214	40

2.10 Manufacturing Process Flow

Following is plant process flow

3. Milestone on the Journey of Manufacturing Excellence

3.1 Need of TPM

Implementation of TPM is for changing the mind-set of the organization. Organizational change is needed in order to align the company with changing business environment. There are **external** and **internal** factors, which necessitate the change to achieve Operational Excellence. Sigma found TPM as an Effective tool to address its needs and hence decided to adopt TPM as a Business Tool to improve the efficiency of Plant Operation.

3.2 Embracing TPM for Manufacturing Excellence

Our company Vision is to 'To be the global partner of choice by exceeding customer expectations'.

In line with our vision, we have felt the strong need of TPM as it will help us to achieve zero BAD. Develop employee capability, this will result in increased productivity, improved customer satisfaction and make profitable organization.

The below details represent the reason we embraced TPM to achieve operational excellence.

3.3 TPM Policy

To implement TPM management established TPM Policy.

3.4 Integration of all Tools and Methodologies in TPM

Linkage of KMI KPI and KAI established for all parameters. Sample mentioned below

KMI	KPI	KAI	Pillar
EBITA improvement	Reduce Material Costs	 Alternate material. Alternate source, negotiations VA –VE projects – Zero based working Kaizen on losses / wastes Labor productivity/ Automation/ Ind. 4.0 Projects 	KK, DM
	Reduce Conversion Cost	 CIP Projects R&M reduction Projects Energy cost reduction projects 	KK, PM, OTPM

3.5 Evolution of Operator

We have achieved a major leap in the mindset of our machine operators and maintenance staff. This table represents the status of their mindset before and after introduction of TPM.

#	Before introduction of TPM	After introduction of TPM
А	Machine Operators	
1	Machine operators are mainly responsible for production	Machine operators are assigned responsibility of minor maintenance of machines
2	"I produce and You Maintain" attitude of operators	"I do, I check and I Maintain" attitude of operators—My Machine Concept
3	No formal checklist for machine maintenance basic parameters	Use of Checklist covering C-L-I-T-A
4	Only escalating when machine is dysfunctional	knowledge of machine functioning
5	Reporting of Breakdowns	 Identification and understanding of abnormalities. Participation in repair work during Maintenance Mindset change for zero breakdown
В	Maintenance Staff	
1	Focus on immediate repair for fixing the problems	Focus on preventive actions
2	Frequency and coverage of advanced maintenance techniques was less	More use and coverage of advance maintenance techniques – Vibration and Current Monitoring (CBM)
3	Tendency to get replacement of old machines	Focus on increasing life of old machines
4	Limited use of root cause analysis approach	Insistence on using Why- Why analysis Initiated use of Phenomena Mechanism analysis for chronic problems

4. Results and Benefits Achieved

4.1 Key Performance Indices – Results

Category	Index	Unit	BM (TPM Started) FY18	Actual Status YTD FY24
S	Number of work-related accidents requiring days off work	Cases/ Year	1	0
S	Number of work-related accidents not requiring days off work	Cases/ Year	169	3
Р	Productivity for main products (Manpower Productivity)	Kgs / Man / Month	616	822
Р	OEE (or Overall Plant Efficiency)	%	77%	91%
Р	Availability	%	90%	96%
Р	Performance Rate	%	88%	96%
Р	Quality Products Rate	%	98%	99%
Р	Number of breakdowns	Breakdowns / Month	393	76
Р	MTBF	Hour	294	473
Р	MTTR	Hour	1	0.62
Q	Number of customer complaints	Number / Year	80	1
Q	In-line defect rate (scrap)	%	3.96	2.79

Company Profile – Sigma Unit II

Q	In-line defect rate (rework)	%	5.46	2.78
С	Cost index (Conversion Cost)	\$ / Kg	0.75	0.74
D	Production Lead time	Days	0.723	0.59
D	Delivery Performance	%	85	98
S	Frequency rate	Number of occupational accidents with leave for 1 000 000 worked hours	0.49	0
М	Number of Employee Suggestions Implemented	Numbers / Employee / Month	0.39	2.83

4.2 Intangible Benefits

Understanding TPM in right spirit & practicing it day-to-day over five years has brought significant changes in work culture, system orientation, analytical approach & flexibility.

Work Culture:

- Sense of ownership of equipment / process i.e. "I Operate, I maintain, I Control"
- People started believing the possibility of Zero Customer Complaints, Zero In process Defects, Zero breakdowns and Accident
- People have started thinking Deeply and Widely in their areas / section to improve from existing condition to next level
- People now work as per the Flexibility of requirement and does not resist to any changes
- Sustenance of Improvements done by the operators

System Orientation:

- TPM is integrated with IMS
- Management objective are well linked to plant objective, department Objective and then to Cell objectives so focusing cell working in more meaning full and system way
- Neat and Clean working environment can be seen Well defined system for maintenance spare management, Quality monitoring and Production monitoring

Analytical Approach:

• Continuous Improvement / Focus on prevention of losses by searching the abnormalities, root cause analysis and Kaizen Implementation

Flexibility:

- Flexibility in manufacturing due to Multi-skilled operator
- Production Output as per the Customer Pull

4.3 Recognitions in External Competitions

We won 35 external awards in last 4 years. Sample National level awards mentioned below.

5. Way Ahead

#	Particulars	Action Plan	Responsibility	Target Date
1	Challenging JIPM excellence award for Unit I Pune	Horizontal Deployment of TPM methodology from Unit- II	Plant Head – Unit I	FY24
2	Challenging JIPM consistent TPM commitment award for Unit-II	Continue practicing TPM practices	Plant Head – Unit II	FY26
3	Initiate TPM practices in North America Plant	Horizontal Deployment of TPM methodology from Unit- III	TPM-BE Head	FY24 (Initiated)
4	Sustainability Award	Assessment by M/s Frost and Sullivan	TPM-BE Head	FY26